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Thc positive function 1'(1'), where ±il'll') arc the imaginary zeros of the second
derivative of the Bessel function .f,.(:) of the first kind and order I' > --I, increases
for 0 < \' ~ 0.4526 and decreases for 0.5 ~ \' < I. This is in full agreement with the
numerical results given by M. K. Kerimov and S. L. Skorokhodov (U.S.S.R.
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I. INTRODUCTION

This paper is concerned with the monotonicity of the positive function
p( v), where ± ip( v) are the imaginary zeros of the second derivative of the
Bessel function J, (z) of the first kind and order \' > -I. In [4J the
existence of such a unique pair ± ip( v) of purely imaginary zeros of J;'(z)
has been proved in the case 0 < v < 1. In that case, on the basis of numerical
calculations, M. K. Kerimov and S. L. Skorokhodov note in [6, p. 103J
that one of the zeros of J;'(z) moves along the imaginary axis, reaches its
maximum distance from the origin of coordinates roughly at 1'=0.5. and
then returns to the beginning. In this paper we give an analytical proof of
this numerical observation; namely, there is a value \'0 E [0.4526, 0.5J such
that p(l') is strictly increasing on [0, l'oJ and decreasing on [1'0.1].

2. MAl"! RESULT

First of all we prove that any zero ip( I') of the function M, (z) =

(f)z2 +:x(I')) J,.(z) + zJ;,(z), where:x(I') is a differentiable function and J:(z)
is the derivative of J..(z), satisfies a differential equation of the form

dp 2(1')

dl'

0021-9045/90 $3.00
Copyright ( .. 1990 by AcademH.: Press, Inc
All rights of reproduction in any form reserved

p2(v)(1 +:X'(I'))+u(v)

v + :x(I') + Ip(V)
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v> -1

where u( v) is a negative function for every v> -1 and (p( v) is a positive
function for every v > - 1.

In the particular case where [3 = 1 and a( v) = _v 2 the zeros of M,,(::) are
the same as those of 1;'(::). Let ip(v) be an imaginary zero of M,,(::), i.e.,
[_fJp 2(v)+a(v)J I,(ip(v))+ip(v)I:(ip(v))=O. Using the well known
recurrence relation [8, 45J ip(v)I,~(ip(v))=vI,(ip(v))-ip(v)I,+ l(iP(V)),

and the Mittag-Leffler expansion [8, 497J

1,+ l(iP(V)) 2' ~ 1-'---'---'------''----'--- = I P(v) L
I,(ip(v)) 1I~1}~,II+p2(V)'

we find that any imaginary zero of M,(z) satisfies the equation

a( v) +v" 1
fJ- 2( =2".J 0('

P v) ,,'::lJ~,II+fr v)
(2.1 )

where },.II is the nth positive zero of I,,(z). Differentiation of both sides of
(2.1) gives the differential equation (2.0) with

for every v>-1

and

for every II> -1.

For a(v) = _v 2 the differential equation (2.0) takes the form

(2.2 )

where

and

for 0 < v < 1

( )
= 1-21' -4 ~ J,.n(dJ",,/dv) 0

f1 v 2 L'2 2 2 < ,
P (v) n~l (;'.II+P)

This shows that

1
for - ~ v < 12 ., (2.3 )

dp 2(V)
--<0

dv '

1
for 2~ 1'<1.
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O<v<1

We examine the function ,u( v) in (0, !). Using the inequalities [4, 5J

2v(l-v 2
)

p2(V) ~ ,
2v + 1

. dj".11 I ['2 16(v+lf 32(V+I)2(V+2)2l v>-I
./".II-d <--4 ./".11+ 8 - ·2 + ·4 '

V v+ ./'.11 ./".11

and the Rayleigh sums

/. I
(m)~ L-

(JI' - .~m'rn = I, V,II

obtainable from the formulas

(2.4 )

(I) I(J =---
, 4(v + I)'

we have from (2.3)

II I

(V+ n)(J(II) = '\' (Jlk)(J(II--k)
\' ~ \' \'

k~1

n=2,3, ... , [7J

, _ I - 2v _ Lf. JI'.II(dj".n!dv)
,u( ~ ) - J 4 J 2 J

P-(v) (f'~ +p (v))-
1/= 1 . \',n

(1-2v)(I+2v) 4 (I) 32 12 )> ---(J ---(J

2v( I - v2) V +4' v + 4 '

26 (v+ 1)2 27(v+ 1)2 (v+2f+ (J13) _ (J(4)

v+4' v+4 "

for 0 < v ~ 0.4526.

So for 0 < v~ 0.4526, it follows from (2.2) that dp 2(V)/dv > O.
The function p2( v) attains only one local maximum in the interval

(0.4526, 0.5). In fact assume that dp 2( v)/dv = 0 for some v E (0.4526, 0.5).
We prove that d 2p2(V)/dv 2< 0 for this v. Differentiation of (2.2) with
respect to v gives

(2.5 )
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,y . ,2 ·2 C.1'.-'" "

+ 16 ~ J",,,J,,,,, -4 ~ J",,,},,,,,
L, ('2 2)3 L, ('2 2)2'
,,~1 }",,,+P' ,,~l }".,,+p
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(2.6 )

Using the inequalities (2.4) and i"."i::" > -i:.,,, V?O [2], we have from
(2.6) that

'x' ·,2 x Of

+16"~+4"~.L,'4 L,'4
n=l}v,n n=I.1'''1I

(2,7)

Since i:,." < i,j(v + I), v> -I, and i,.1 > v + 1 [I, 3], we obtain from (2.7)

x J",2 2v3+IOv2-v+1
'() 4" '," < 0

J.1v<- "7:1(J;,,,+p2)2-(v+I)3 v(l-V) ,

for v EO (0.4526, 0.5). (2,8)

So from (2.5) and (2,8) it follows that d 2 p2(V)/dv 2 < 0, for v EO (0.4526,0.5).
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