A Result on the Imaginary Zeros of $J_{v}^{\prime \prime}(z)$

E. K. Ifantis and P. D. Siafarikas
Deparment of Mathematics. Enitersity of Patras. 26510 Patras, Grate
Communicated by Paul Nerai

Received July 14. 1988; revised December 1, 1988

Abstract

The positive function $\rho(v)$, where $\pm i \rho(v)$ are the imaginary zeros of the second derivative of the Bessel function $J_{1}(z)$ of the first kind and order $r>-1$, increases for $0<r \leqslant 0.4526$ and decreases for $0.5 \leqslant r<1$. This is in full agreement with the numerical results given by M. K. Kerimov and S. L. Skorokhodov (U.S.S.R. Comput. Math Math. Phys. 25, No. 6 (1985), 101 107). 1990 Academic Press, Inc.

1. Introduction

This paper is concerned with the monotonicity of the positive function $\rho(v)$, where $\pm i \rho(v)$ are the imaginary zeros of the second derivative of the Bessel function $J_{v}(z)$ of the first kind and order $v>-1$. In [4] the existence of such a unique pair $\pm i \rho(v)$ of purely imaginary zeros of $J_{v}^{\prime \prime}(z)$ has been proved in the case $0<v<1$. In that case, on the basis of numerical calculations, M. K. Kerimov and S. L. Skorokhodov note in [6, p. 103] that one of the zeros of $J_{v}^{\prime \prime}(z)$ moves along the imaginary axis, reaches its maximum distance from the origin of coordinates roughly at $v=0.5$, and then returns to the beginning. In this paper we give an analytical proof of this numerical observation; namely, there is a value $v_{0} \in[0.4526,0.5]$ such that $\rho(v)$ is strictly increasing on $\left[0, v_{0}\right]$ and decreasing on $\left[v_{0}, 1\right]$.

2. Main Result

First of all we prove that any zero $i \rho(v)$ of the function $M_{v}(z)=$ $\left(\beta z^{2}+\alpha(v)\right) J_{v}(z)+z J_{v}^{\prime}(z)$, where $\alpha(v)$ is a differentiable function and $J_{v}^{\prime}(z)$ is the derivative of $J_{v}(z)$, satisfies a differential equation of the form

$$
\begin{equation*}
\frac{d \rho^{2}(v)}{d v}=\frac{\rho^{2}(v)\left(1+\alpha^{\prime}(v)\right)+u(v)}{v+\alpha(v)+\rho(v)}, \tag{2.0}
\end{equation*}
$$

where $u(v)$ is a negative function for every $v>-1$ and $\varphi(v)$ is a positive function for every $v>-1$.

In the particular case where $\beta=1$ and $\alpha(v)=-v^{2}$ the zeros of $M_{v}(z)$ are the same as those of $J_{v}^{\prime \prime}(z)$. Let $i \rho(v)$ be an imaginary zero of $M_{v}(z)$, i.e., $\left[-\beta \rho^{2}(v)+\alpha(v)\right] J_{v}(i \rho(v))+i \rho(v) J_{v}^{\prime}(i \rho(v))=0$. Using the well known recurrence relation $[8,45] i \rho(v) J_{v}^{\prime}(i \rho(v))=v J_{v}(i \rho(v))-i \rho(v) J_{v+1}(i \rho(v))$, and the Mittag-Leffler expansion [8, 497]

$$
\frac{J_{v+1}(i \rho(v))}{J_{v}(i \rho(v))}=2 i \rho(v) \sum_{n=1}^{\infty} \frac{1}{j_{v, n}^{2}+\rho^{2}(v)}, \quad v>-1
$$

we find that any imaginary zero of $M_{\|}(z)$ satisfies the equation

$$
\begin{equation*}
\beta-\frac{\alpha(v)+v}{\rho^{2}(v)}=2 \sum_{n=1}^{\text {a }} \frac{1}{j_{v, n}^{2}+\rho^{2}(v)}, \tag{2.1}
\end{equation*}
$$

where $j_{1, n}$ is the nth positive zero of $J_{v}(z)$. Differentiation of both sides of (2.1) gives the differential equation (2.0) with

$$
u(v)=-4 \rho^{4}(v) \sum_{n=1}^{\infty} \frac{j_{v, n}\left(d j_{v, n} / d v\right)}{\left(j_{v, n}^{2}+\rho^{2}(v)\right)^{2}}<0, \quad \text { for every } \quad v>-1
$$

and

$$
\varphi(v)=2 \rho^{4}(v) \sum_{n=1}^{\infty} \frac{1}{\left(j_{v, n}^{2}+\rho^{2}(v)\right)^{2}}>0, \quad \text { for every } \quad v>-1
$$

For $\alpha(v)=-v^{2}$ the differential equation (2.0) takes the form

$$
\begin{equation*}
\lambda(v) \frac{d \rho^{2}(v)}{d v}=\mu(v) \tag{2.2}
\end{equation*}
$$

where

$$
\lambda(v)=\frac{v(1-v)}{\rho^{4}(v)}+2 \sum_{n=1}^{\infty} \frac{1}{\left(j_{v, n}^{2}+\rho^{2}(v)\right.}>0, \quad \text { for } \quad 0<v<1
$$

and

$$
\begin{equation*}
\mu(v)=\frac{1-2 v}{\rho^{2}(v)}-4 \sum_{n=1}^{\infty} \frac{j_{v, n}\left(d j_{v, n} / d v\right)}{\left(j_{v, n}^{2}+\rho^{2}\right)^{2}}<0, \quad \text { for } \quad \frac{1}{2} \leqslant v<1 . \tag{2.3}
\end{equation*}
$$

This shows that

$$
\frac{d \rho^{2}(v)}{d v}<0, \quad \text { for } \quad \frac{1}{2} \leqslant v<1
$$

We examine the function $\mu(v)$ in $\left(0, \frac{1}{2}\right)$. Using the inequalities $[4,5]$

$$
\begin{align*}
& \rho^{2}(v) \leqslant \frac{2 v\left(1-v^{2}\right)}{2 v+1}, \quad 0<v<1 \tag{2.4}\\
& j_{v, n} \frac{d j_{v, n}}{d v}<\frac{1}{v+4}\left[j_{v, n}^{2}+8-\frac{16(v+1)^{2}}{j_{v, n}^{2}}+\frac{32(v+1)^{2}(v+2)^{2}}{j_{v, n}^{4}}\right], \quad v>-1
\end{align*}
$$

and the Rayleigh sums

$$
\sigma_{v}^{(m)}=\sum_{n=1}^{\infty} \frac{1}{j_{v, n}^{2 m}},
$$

obtainable from the formulas

$$
\sigma_{v}^{(1)}=\frac{1}{4(v+1)}, \quad(v+n) \sigma_{v}^{(n)}=\sum_{k-1}^{n} \sigma_{v}^{(k)} \sigma_{v}^{(n-k)}, \quad n=2,3, \ldots, \quad[7]
$$

we have from (2.3)

$$
\begin{aligned}
\mu(v)= & \frac{1-2 v}{\rho^{2}(v)}-4 \sum_{n=1}^{x} \frac{j_{v, n}\left(d j_{v, n} / d v\right)}{\left(j_{v, n}^{2}+\rho^{2}(v)\right)^{2}} \\
> & \frac{(1-2 v)(1+2 v)}{2 v\left(1-v^{2}\right)}-\frac{4}{v+4} \sigma_{v}^{(1)}-\frac{32}{v+4} \sigma_{v}^{(2)} \\
& +\frac{2^{6}(v+1)^{2}}{v+4} \sigma_{v}^{(3)}-\frac{2^{7}(v+1)^{2}(v+2)^{2}}{v+4} \sigma_{v}^{(4)} \\
= & \frac{1}{1+v}\left[\frac{1-4 v^{2}}{2 v(1-v)}-\frac{1}{v+4}-\frac{5 v^{2}+29 v+54}{2(v+1)(v+2)(v+3)(v+4)^{2}}\right]>0, \\
& \quad \text { or } \quad 0<v \leqslant 0.4526 .
\end{aligned}
$$

So for $0<v \leqslant 0.4526$, it follows from (2.2) that $d \rho^{2}(v) / d v>0$.
The function $\rho^{2}(v)$ attains only one local maximum in the interval $(0.4526,0.5)$. In fact assume that $d \rho^{2}(v) / d v=0$ for some $v \in(0.4526,0.5)$. We prove that $d^{2} \rho^{2}(v) / d v^{2}<0$ for this v. Differentiation of (2.2) with respect to v gives

$$
\begin{equation*}
i(v) \frac{d^{2} \rho^{2}(v)}{d v^{2}}=\mu^{\prime}(v), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{align*}
\mu^{\prime}(v)= & -\frac{2}{\rho^{2}(v)}+4 \sum_{n=1}^{\infty} \frac{4 j_{v, n}^{\prime 2} j_{v, n}^{2}-\left(j_{v, n}^{\prime 2}+j_{v, n} j_{v, n}^{\prime \prime}\right)\left(j_{v, n}^{2}+\rho^{2}\right)}{\left(j_{v, n}^{2}+\rho^{2}\right)^{3}} \\
= & -\frac{2}{\rho^{2}(v)}-4 \sum_{n=1}^{\infty} \frac{j_{v, n}^{\prime 2}}{\left(j_{v, n}^{2}+\rho^{2}\right)^{2}} \\
& +16 \sum_{n=1}^{\infty} \frac{j_{v, n}^{\prime 2} j_{v, n}^{2}}{\left(j_{v, n}^{2}+\rho^{2}\right)^{3}}-4 \sum_{n=1}^{\infty} \frac{j_{v, n} j_{v, n}^{\prime \prime}}{\left(j_{v, n}^{2}+\rho^{2}\right)^{2}} . \tag{2.6}
\end{align*}
$$

Using the inequalities (2.4) and $j_{v, n} j_{v, n}^{\prime \prime}>-j_{v, n}^{\prime}, v \geqslant 0$ [2], we have from (2.6) that

$$
\begin{align*}
\mu^{\prime}(v)< & -4 \sum_{n=1}^{\infty} \frac{j_{v, n}^{\prime 2}}{\left(j_{v, n}^{2}+\rho^{2}\right)^{2}}-\frac{2 v+1}{v\left(1-v^{2}\right)} \\
& +16 \sum_{n=1}^{\infty} \frac{j_{v, n}^{\prime 2}}{j_{v, n}^{4}}+4 \sum_{n=1}^{\infty} \frac{j_{v, n}^{\prime}}{j_{v, n}^{4}} \tag{2.7}
\end{align*}
$$

Since $j_{v, n}^{\prime}<j_{v, n} /(v+1), v>-1$, and $j_{v, 1}>v+1[1,3]$, we obtain from (2.7)

$$
\begin{align*}
& \mu^{\prime}(v)<-4 \sum_{n=1}^{\infty} \frac{j_{v, n}^{\prime 2}}{\left(j_{v, n}^{2}+\rho^{2}\right)^{2}}-\frac{2 v+1}{v\left(1-v^{2}\right)} \\
& \quad \frac{16}{(v+1)^{2}} \sum_{n=1}^{\infty} \frac{1}{j_{v, n}^{2}}+\frac{4}{v+1} \frac{1}{j_{v, 1}} \sum_{n=1}^{\infty} \frac{1}{j_{v, n}^{2}} \\
& \mu^{\prime}(v)<-4 \sum_{n=1}^{\infty} \frac{j_{v, n}^{\prime 2}}{\left(j_{v, n}^{2}+\rho^{2}\right)^{2}}-\frac{2 v^{3}+10 v^{2}-v+1}{(v+1)^{3} v(1-v)}<0, \\
& \quad \text { for } v \in(0.4526,0.5) . \tag{2.8}
\end{align*}
$$

So from (2.5) and (2.8) it follows that $d^{2} \rho^{2}(v) / d v^{2}<0$, for $v \in(0.4526,0.5)$.

Acknowledgment

The authors express their thanks to Professor A'. Elbert for helpful remarks and suggestions.

References

1. A'. Elbert, Concavity of the zeros of Bessel functions, Stud. Sci. Math. Hungar. 12 (1977), 81-88.
2. A'. Elbert and A. Laforgia, Some consequences of a lower bound for the second derivative of the zeros of Bessel functions, J. Math. Anal. Appl. 125 (1987), 1-5.
3. E. K. Ifantis and P. D. Siafarikas, A differential equation for the zeros of Bessel functions, Appl. Anal. 20 (1985), 269-281.
4. E. K. Ifantis, P. D. Siafarikas, and C. B. Kolris, The imaginary zeros of a mixed Bessel function, J. Appl. Math. Phys. (ZAMP) 39 (1988), 157-165.
5. E. K. Ifantis anid P. D. Siafarikas, Differential inequalities for the positive zeros of Bessel functions, J. Comput. Appl. Math. 30 (1990).
6. M. K. Kerimov and S. L. Skorokhodov, Calculation of the multiple zeros of the derivatives of the cylindrical Bessel functions $J_{v}(z)$ and $Y_{4}(z)$, U.S.S.R. Comput. Math. Math. Phys. 25, No. 6 (1985), 101-107.
7. E. C. Obi, A note on the Rayleigh polynomials, SLAM J. Math. Anal. 9 (1978), 825-834.
8. G. N. Watson. "A Treatise on the Theory of Bessel Functions," Cambridge Univ. Press, Cambridge, 1965.
